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Abstract-Heat transfer during condensation of a flowing vapour on an isothermal plate of arbitrary 
inclination is investigated analytically. The analysis is based on a previously reported perturbation solution 
of the film stability problem. A closed form expression is obtained for the dimensionless average heat 
transfer coefficient which is compared with available solutions valid for the special cases of condensation 

on horizontal and vertical surfaces. 

INTRODUCTION where 

HEAT TRANSFER during forced flow vapour con- 
densation of a saturated vapour on isothermal sur- 
faces has been the subject of numerous previous 
articies. To the best knowledge of the author, there 
is no prediction available in the literature regarding 
average heat transfer coefficients for forced vapour 
condensation on isothermal flat surfaces of arbitrary 
inclination. The present study is based on a per- 
turbation analysis and leads to a closed form 
expression for the average heat transfer coefficient. 
Among the many previous works for the prediction 
of local heat transfer coeffi~ents on a vertical surface 
are those reported in refs. [l-3]. Thermal convection 
terms in the energy equation and acceleration terms 
in the momentum equation of the condensate film 
were neglected in refs. [1,2]. Denny and Mills [3] 
accounted for the convection and acceleration effects 
by means of a numerical analysis. They reported 
results in dimensional form and only for three differ- 
ent values of the vapour velocity. Result reported in 
all three studies are further restricted to local values 
of the heat transfer coefficient. The purpose of the 
present investigation is the presentation of a dimen- 
sionless closed form formula for the average heat 
transfer coefficient which may be readily used in many 
different practical situations, i.e. for many different 
values of the dimensionless parameters of the physical 
process. 

and 

Equation (l), being valid for a wavy condensate film, 
is also applicable for a steady condensate film. The 
steady-state condensate film thickness is governed 
by the following non-linear ordinary differential 
equation [4] : 

Coefficients ko-kz6 were reported in ref. [4]. Terms 
of O(E’) in equation (4) represent the effect of finite 
amplitude wave motion on the condensate film and 
this term will vanish for a steady film. Ad~tionally, 
terms multiplied by negligibly small coefficients kS, kg 
and k , ,, will be neglected. The characteristic length in 
equation (4) is the wavelength, 2, which does not fit 
in with the physics of a steady condensate film. The 
following transformations will be introduced into 
equation (4) in order to change the characteristic 
dimension from wavelength to (2v2/g)‘13 which is the 
proper characte~sti& dimension for a steady film 

ANALYSIS 

A first-order perturbation solution for forced va- 
pour flow condensation on inclined isothermal surfaces 
was previously reported in ref. [4]. The temperature 
distribution in the condensate film is given by ref. [4] 

8 = Bc+&, +cJ(c?) (1) 

A = k2q2/Uk, (3 

e = 4k,k,x/U2k;. (6) 

Substitution of equations (5) and (6) into equation 
(4) and taking E = k, = kg = klo = 0 in equation (4) 
yields 

t On leave from Department of Mechanical Engineering, 
University of Gaziantep, 273 10 Gaziantep, Turkey. 

l--266,-26 = F[-s,(5A2A;f2A3A& 

+s,(AAsc +A:/‘2)+s,(3AA; +2A2At<)]+O(FZ) 

(7) 

00 = r/r (2) 

x cv3-93~/~~+~rl--z~~cy4--44~/40~Y. (3) 

-k,,r?6~~-k,6U~4~~]+O(C13). (4) 
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NOMENCLATURE 

CP liquid specific heat 
i 

PViP 
F acceleration effect parameter, cPAT/hfg Pr defined in equation (5) 
F Pr heat capacity parameter, c,,AT/h, A OL defined in equation (25) 
Fr Froude number, u2/nL E small parameter 
9 gravitational acceleration ii film thickness 
h heat transfer coefficient 90 local film thickness at downstream end 
/i average heat transfer coefficient of plate 
h 
Ir_” 

enthalpy of phase change d dimensionless steady flow film thickness 
liquid conductivity ? 

L” 
dimensionless unsteady film thickness 

length of plate H dimensionless temperature 
L _E/(2vz/g)“3 1 wavelength 
M L/!J /*, ,u~ liquid, vapour viscosity 
n 2 cos # V liquid kinematic viscosity 
Pr Prandti number r defined in equation (6) 
R gri’o/2v2 ;, defined in equation (24) 
r, t time, dimensionless time p, pV 
?, Fs_ fW 

liquid, vapour density 
liquid, vapour, interface di angle of plate with vertical. 

temperature 
AT F$,- i;, Subscripts 
u &/@v/2) ‘I3 t, y”, x partial differentiation with respect to 
U -0 characteristic velocity, g$J2v the subscript. 

U”O vapour Z-component velocity 

Qoi 00 
i, j), (X y) dimensional dimensionless, 

Dimensionless terms 

Cartesian coordina;es. 
0 (F- ~W)/(E- FW) 
Y JWO 
rt I?iii” 

Greek symbols f @ ~ovio 
K wave number, 27-cfo/l X ozjrj” . 

where 

s, = 4k,,/Rk; (8) 

sz = 8k,,/Rk3 (9) 

s3 = -4k,,jRk,k,. (10) 

The following expansion will be utilized to find a first- 
order asymptotic solution of equation (7) : 

A = A,+FA, +O(F*) (11) 

subject to the initial condition 

A(0) = 0. (12) 

Substituting equation (11) into equations (7) and (12), 
and equating like powers of F, one obtains the zeroth- 
order and the first-order problems which may be 
solved in succession to yield 

A0 = -l+(l+<)” (13) 

A, =~~/(1+5)-~~(1+5)-~~~In(1+5) 

-(s, +s,/4)+(3s,5/8-slS-s, +s3/4) 

x(l+5).-“2 (14) 

where 

sq = (-S, +s$--s,)/2 (15) 

s5 = (sI +s3 -sJ2)/8. (16) 

The heat transfer coefficient is determined from 

h = -kpj/(Fw - Fs) atp = 0 (17) 

and its average value from 

/i = _i 
E 

s 
h d.?. 

L 0 
(18) 

Equations (1 j(3) with equations (5), (6) and (17) 
result in the following expression for the dimen- 
sionless local heat transfer coefficient : 

(h/k)~2v~/g)“3(k3~/k*)‘~2 

= A~“2fF(2b,(a/k,)A’!*A, 

+2b2(cq’k3)A- ‘:*A<)+O(F*) (19) 

where 

b, = n(8 + 3F)Pr/80(1+ F) (2oj 

b, = FPr/24(1+ I;). (21) 

Finally, from equations (19) and (IS), the dimen- 
sionless average heat transfer coefficient is obtained 
as 
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(3Q4k)(2v2/g) “3(4FL/n)“4 7 I ,IrI I ,,I 

Pr=lO 
= (~,/cuz)“~{, 3’4A:f{A0L+ 3 6- 

- EQUATlON (22) 
+F[(abl/kl-3s1/16)Ao~ 

+3(s,/8+r3/8+ab2/k3) 

+ (3s4/2+6s5)A;~/* tan-’ (A&‘/’ 

- 3sSA;i In (1 + A&] + O(F*)} 

where 

L = E/(2?/g)“’ 

CL = 4aFk,L/(k,u)* 

AoL = -l+(l+&)“*. (25) 
0 1 1111 I III_ 

Equation (22) is valid for a plate of arbitrary incli- lt? ld 1 

nation. For a horizontal surface (4 = 90”, -go”), FPr 
n = 2 cos C$ vanishes and equation (22) simplifies to 

FIG. 2. Dimensionless average heat transfer coefficient for a 

(fi/2k)(&/0,)“’ = (k3/2aF)“’ vertical surface (n = 2) when Pr = 10. 

x[l +~(ab2/k3+s2/16)+O(F2)1. (26) 7- 1 I1(1 1 III 

For condensation of a quiescent vapour ( ofi = 0) on 
an inclined surface, equation (22) simplifies to 

(3@4k)(2v2/k) ‘j3(4FL/n) ‘I4 = (k2/an)‘14 

x[l+F(ab,/k,-3s1/16)+O(L% (27) 

DISCUSSION 

Equation (22) gives the dimensionless average heat 
transfer coefficient for forced vapour flow con- 
densation on an isothermal inclined surface and is 
depicted in Figs. 1-5 for five different Prandtl 1 

0 

numbers. The lowest curves in Figs. l-5 corre- 
sponding to Fr = 0 is for condensation of a quiescent 0,’ “‘I ’ “1 
vapour. Numerical solution of the full boundary d ld 1 

layer equations for Fr = 0 was reported in ref. [5]. FPr 
FIG. 3. Dimensionless average heat transfer coefficient for a 

vertical surface (n = 2) when Pr = 1. 

7 I 1111 I III’ 

- EQUATION (22 1 
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10 d3 ti* 18 

FPr FPr 
FIG. 1. Dimensionless average heat transfer coefficient for a FIG. 4. Dimensionless average heat transfer coefficient for a 

vertical surface (n = 2) when Pr = 100. vertical surface (n = 2) when Pr = 0.03. 
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09. 
-KOHlW(Iti~500 

----EQUATiON(26) 
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FIG. 5. Dimensionless average heat transfer coefficient for a 
vertical surface (n = 2) when Pr = 0.003. 

F 

FIG. 7. Comparison of equation (26) with the results of 
Koh [6] (n = 0, 4 = 90’). 

Figures 2 and 3 of ref. [S] for Pr = 100, 10, 1, 0.03, 
and 0.003 are in complete agreement with the curves 
corresponding to Fr = 0 in Figs. l-5 of the present 
study. This validates the applicability of equation (22) 
in the small Froude number limit. The present analysis 
which is a follow up to the analysis reported in ref. [4] 
is based on a generalized version of the ‘asymptotic 
shear stress’ interfacial boundary condition (equation 
(28) of ref. [4]). It is concluded, therefore, that the 
‘asymptotic shear stress’ interfacial condition is a valid 
approximation at small Froude numbers. Equation 
(22) being valid for small Froude numbers should be 
expected to be valid for all Froude numbers if its 
validity can be demonstrated for Fr = co. In this limit, 
equation (22) simplifies into equation (26) which is 
also valid for forced vapour flow condensation on a 
horizontal surface. This problem has been previously 

1.0 I , ; t I I I , 

0.9 - 
-KOH1962(tihOO 

---- EOUATION (26) 

FIG. 6. Comparison of equation (26) with the results of 
Koh [6] (n = 0, 4 = 90”). 

solved by Koh [6] considering the full vapour thermal 
boundary layer equation. Equation (26) is compared 
with the results of Koh [6] in Figs. 6-8. It is seen from 
these figures that agreement with Koh’s results are 
good at small Prandtl numbers and worse at large 
Prandtl numbers. It is thus concluded that equation 
(26) is valid at the asymptotic limit when yM = 0. It 
has been previously mentioned in ref. [7] that analyses 
of forced vapour flow condensation based on the 
‘asymptotic shear stress’ boundary condition is gen- 
erally valid for (yM)“‘/F < 2 and the present results 
are in agreement with this observation. The present 
analysis is a first-order perturbation solution with 
respect to the acceleration effect parameter, F, and 
applicability of equations (22) (26), and (27) is further 
limited to values of F < 1. 

0.8 ri 

07 - KOH 1962dhl5OO 

__ 

----EWATION(26) 1 
0.6 

FIG. 8. Comparison of equation (26) with the results of 
Koh [6] (n = 0, d, = 90”). 
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UNE SOLUTION ANALYTIQUE DU COEFFICIENT DE TRANSFERT MOYEN DE 
CHALEUR POUR L’ECOULEMENT FORCE DE VAPEUR AVEC 

CONDENSATION SUR DES SURFACES INCLINEES 

R&m&-On &die analytiquement le transfert thermique pendant la condensation dune vapeur s’ecoulant 
sur une plaque isotherme inclinbe. L’analyse est bade sur une solution de perturbation deja pub&e pour 
un problemme de stabilitb de film. Une expression est obtenue pour le coefficient sans dimension de transfert 
de chaleur moyen et il est compare avec d’autres solutions valables pour les cas particuliers de condensation 

sur des surfaces horizontales ou verticales. 

EINE GESCHLOSSENE LOSUNG FOR DEN MITTLEREN 
WARME~BERGANGSKOEFFIZIENTEN BE1 DER KONDENSATION EINER 

ERZWUNGENEN DAMPFSTRdMUNG AN GENEIGTEN OBERFLACHEN 

Znsannnenfasaung-Betrachtet wird der W5rmetransport wahrend der Kondensation eines stromenden 
Dampfes an einer isothermen Platte mit beliebigem Neigungswinkel. Die Untersuchung basiert dabei 
auf einer bereits vorgestellten Liisung des Filmstabilitiitsproblems. Filr den dimensionslosen mittleren 
WBtmeilbergangskoeSizienten wird eine Gleichung in geschlossener Form vorgestellt, welche mit den 

bekannten Liisungen fur die Kondensation an horizontalen und vertikalen F&hen verglichen wird. 

3AMKHYTOE PEIBEHHE &JDI CPEAHEFO KOS~MHHEHTA TEI-IJIOIIEPEHOCA IIPH 
BbIHmAEHHO$i KOHAEHCAILHH HOTOKA IIAPA HA HAKJIOHHbIX 

IIOBEPXHOCTgX 

AB~WT~HHB--AHZUIHTEY~CXH nccBenyercfl rennonepenoc npn XoHnencaqEm nororta napa Ha H3oTepMH- 
Hec~oir nnacrrine c npoH3BonbHbrhi yrnoh4 HaIuIoHa. AHanH3 omioBbmaercB Ha nonyrieHHoh4 panee 
pemeHHH Meronohr B03MyIHeHHB 3a~ams ycrotiraeocra nneHtrH. PemeHHe HpencraeneHo B 3ahHziyToM 
BHBe arm 6eapasMepkoro cpemiero ro3@@rnsrerrra Tennoneperroca ri ,uario ero cpaeriemie c ~eronni- 
MHCB I_WmeHHHMH, KOTOpbIe BBJIfHoTCII CnpaBeHJtBBBIMH B oco6arx cXy¶aeX ROHHeHCBHHH Ha rOpH30HTa- 

JlbHBtX H BepTHKaJtbHblX UOBepXHOcrBX. 


